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Abstract We consider the totally asymmetric simple exclusion process (TASEP) with two-
sided Bernoulli initial condition, i.e., with left density ρ− and right density ρ+. We study
the associated height function, whose discrete gradient is given by the particle occurrences.
Macroscopically one has a deterministic limit shape with a shock or a rarefaction fan de-
pending on the values of ρ±. We characterize the large time scaling limit of the multipoint
fluctuations as a function of the densities ρ± and of the different macroscopic regions. More-
over, using a slow decorrelation phenomena, the results are extended from fixed time to the
whole space-time, except along the some directions (the characteristic solutions of the re-
lated Burgers equation) where the problem is still open.

On the way to proving the results for TASEP, we obtain the limit processes for the fluc-
tuations in a class of corner growth processes with external sources, of equivalently for the
last passage time in a directed percolation model with two-sided boundary conditions. Addi-
tionally, we provide analogous results for eigenvalues of perturbed complex Wishart (sample
covariance) matrices.
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1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) on Z. This is one of
the basic one-dimensional interacting stochastic particle systems that, despite its simplicity,
exhibits a number of interesting features. TASEP is a Markov process ηt with state space
{0,1}Z. For a given time t ∈ R+ and position x ∈ Z, we say that site x is occupied at time
t if ηt (x) = 1 and it is empty if ηt (x) = 0 (we can have at most one particle at each site:
exclusion principle). The dynamics is defined as follows. Particles jump to the neighboring
right site with rate 1 provided that the site is empty. Jumps are independent of each other
and take place after an exponential waiting time with mean 1, which is counted from the
time instant when the right neighbor site is empty (for a rigorous construction, see [43, 44]).

One may study a variety of slightly different observables of TASEP such as the total
current, the location of a tagged particles or the TASEP height function. Here we focus on
the height function, ht , defined from a TASEP configuration ηt as

ht (j) =

⎧
⎪⎨

⎪⎩

2Nt +∑j

i=1(1 − 2ηt (i)) for j ≥ 1,

2Nt for j = 0,

2Nt −∑0
i=j+1(1 − 2ηt (i)) for j ≤ −1,

(1.1)

where Nt is the total number of particles which jumped from site 0 to site 1 during the time
interval [0, t].

In this paper we consider the simplest family of (random) initial condition, in which
shockwaves or rarefaction fans occur. More precisely, our initial condition is Bernoulli prod-
uct measure with density ρ− on Z− = {. . . ,−2,−1} and ρ+ on Z

∗+ = {0,1, . . .}. We refer
to this as two-sided Bernoulli initial condition. Particular cases which have already been
studied are:

• the step-initial condition (ρ− = 1 and ρ+ = 0), where Z− is completely filled. In this case,
there is a rarefaction fan, the fluctuations of ht scale as t1/3, the correlation length as t2/3,
and the limit process is the Airy2 process (see the case b ≡ 0 in [13]). The Airy2 process
occurred first in closely related growth models [36, 49].

• Stationary initial condition (ρ ≡ ρ− = ρ+ ∈ (0,1)). The only stationary and translation
invariant measures are Bernoulli product measures with constant density ρ ∈ [0,1] (ρ = 0
and ρ = 1 are however trivial) [42]. The scaling limit for the multi-point distribution of
stationary TASEP has been recently unraveled in [6].

Therefore we have only to focus on ρ+ �= ρ− (the results below are the content of Theo-
rem 2.1 and are illustrated in Fig. 1). There are two cases:

(a) ρ− > ρ+. For large time t the asymptotic density decreases linearly from 1 − ρ− to
1 − ρ+ over the region from (1 − 2ρ−)t to (1 − 2ρ+)t called a rarefaction fan (see
Fig. 1(a)). In this region the height fluctuations live on a t1/3 and are governed by the
Airy2 process like for step-initial condition (with correlation length scaling as t2/3).
Around positions (1−2ρ±)t the randomness of the initial conditions start being relevant
and there is a transition process from Airy2 to Brownian Motion. When the fluctuations
coming from the initial condition are on the t1/2 scale, they dominate the fluctuations
created by the dynamics (t1/3 scale) and are governed by Brownian Motion. This is the
case on the left and on the right of the rarefaction fan.

(b) ρ− < ρ+. For large time t there is a macroscopic shock with density jump from ρ− to
ρ+ around the position (1 − ρ− − ρ+)t (see Fig. 1(b)). For large time t , the fluctuations
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on the left and on the right of the shock are independent. Of particular interest, is then
the joint-distribution of the height function around the shockwave (1 − ρ− − ρ+)t at
different times. The initial conditions considered here are random and therefore look-
ing far enough away the initial randomness becomes more important than the fluctua-
tions created by the dynamics, which live on the t1/3 scale only. For non-random initial
conditions this does not happen and further limit processes arise, see [14, 15] and, for
one-sided random initial condition, see [16].

The results for the one-point distributions in Theorem 2.1 were conjectured in [48] and
recently proven in [10]. The conjecture was based on universality, since analogue results
were available for a stochastic growth model (the polynuclear growth (PNG) model) [7],
which is in the same universality class, named for Kardar-Parisi-Zhang (KPZ) [39]. The
extension to multi-point distributions at fixed time in the PNG model was carried out in [33]
(except for the case corresponding to stationary TASEP).

Extensions away from fixed-time have been previously obtained in TASEP (with different
type of initial conditions) in [13, 34]. However, the extension was technically restricted
to space-like paths, for which one could still get explicit expressions for the correlation
functions. Our main result (Theorem 2.1) is much more general, since it covers almost all
space-time. In particular we can analyze situations where the correlation functions are not
explicitly known!

The only directions where the question of the limit process remains open are the char-
acteristic solutions of the Burgers equation associated to TASEP, also called characteristic
lines [25, 61]. Along these space-time lines the appropriate scaling limit is different, because
the decorrelation occurs on a much longer time scale compared with the usual decorrelation
length. This because second-class particles follow (on a macroscopic scale) exactly these
trajectories. This phenomenon was first proven in a PNG model [31] and it is called slow
decorrelation phenomenon (recently proven in greater generality in [20], see Proposition 2.5
below for TASEP).

Methods in the proof of Theorem 2.1 The proof of our main result, Theorem 2.1, employs
a combination of many of the state-of-the-art methods in the study of TASEP fluctuations
(exact determinantal correlation formulas, the connection to last passage percolation, cou-
pling methods, and slow decorrelation). In outlining our proof we also provide a brief review
of the literature on these different techniques.

The first step in the proof is to establish a multipoint fluctuation result along a fixed
space-time cut for a simpler initial condition corresponding to fixing ρ+ = 0. For certain
space-time cuts there exist exact determinantal expressions for the correlation functions.
Specifically, if one considers the fixed-time cut for TASEP (i.e., the joint-distribution of the
height at a fixed time) then there is a way to extend [14, 16] to get the necessary formulas for
the correlation functions [11]. We consider a different cut which corresponds to a directed
last passage percolation model with one-sided boundary condition (see Sect. 2.2.2). In that
case the Schur process gives the multipoint correlation kernel, (3.1) (for details on the Schur
process and applications see [17, 37, 46, 47]). In the TASEP setting, the Schur process is
the process of a given (tagged) particle observed at different times. Using techniques of
asymptotic analysis for Fredholm determinants we can extract our desired limit theorems
from these formulas. This is done in Sect. 3.1 and recorded as Proposition 2.4. As opposed
to the related work of [33], this is the only case for which we must appeal to the exact
correlation formulas and take asymptotics.

From this point on our proof relies entirely on probabilistic methods. The only case which
is not covered by these other techniques is ρ− = ρ+ at the characteristic speed, but this was
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analyzed independently in [6]. These methods allow us to avoid the more involved shift
and analytic continuation arguments of [6] in addition to the Schur process (see Remark 9
of [6]).

The first probabilistic method we use is slow decorrelation [20] (given as Proposi-
tion 2.5). This implies that the fluctuation limit process for one-sided initial conditions ex-
tends away from cut on which it was proved (Proposition 2.8). In order to bootstrap the
one-sided process result to the full two-sided case we appeal to a coupling method intro-
duced in [10]. In fact, versions of this method can be found in the literature in [3, 52, 54]
under the names “microscopic Lax-Oleinik formula” or “strong monotonicity”. The new
component offered by the coupling method of [10] is that due to a few (fairly simple) lem-
mas (see Sect. 3.2) one can now prove t1/3 fluctuation results. The essential idea behind
these methods is that statistics associated to complicated particle system or growth process
initial conditions can often be written in terms of statistics associated to simpler particle
systems which have been coupled to the original system. Once this connection is in place
(for us Sect. 3.3) it is generally possible to translate asymptotic results about the simplier
systems into results about the original (more complicated) system. This method is applied
in Sect. 3.3 to prove Theorem 2.9 which is the last passage percolation equivalent of our
main TASEP result. Finally, in Sect. 3.4 we show how to translate this back into a proof of
Theorem 2.1.

One-side last passage percolation is closely related to the largest eigenvalue of some com-
plex Wishart (sample covariance) matrices [5]. Using the connection established in [17, 22],
we restate our one-sided last passage percolation process result in terms of a random matrix
eigenvalue process (see Theorem 2.11).

There are a variety of conjectured results which go under the title of universality. The re-
sults of this paper deal with universality of the PNG and continuous time TASEP. However,
TASEP is also the extreme case of the partially asymmetric version (PASEP), where par-
ticles can jump both left and right with different jump rates. For the one-point distribution
function progress in this direction was made in [26–30] in the early 1990s. Very recently,
due to the efforts of Tracy and Widom [56–60], Derrida and Gerschenfeld [21], Balázs and
Seppäläinen [8, 9], Quastel and Valkó [50], Mountford and Guiol [45] significant progress
has been made in answering this question in the general PASEP. Of particular note is the
recent result of Tracy and Widom [59] which shows that the results of [10] for TASEP with
two-sided Bernoulli initial conditions extend to the PASEP setting for ρ+ = 0 and general
values of ρ−. It seems hopeful that the integrable systems methods which proved useful in
that paper will, eventually be able to deal with general two-sided Bernoulli initial conditions
as well as multi-point distribution functions. With that eventuality in mind, this paper should
serve as a guide in that pursuit.

In addition to extending TASEP results to the context of the PASEP, Tracy and Widom’s
formula has played a prominent role in the long sought after calculation [4, 53] of the one-
point function for the KPZ stochastic PDE with narrow wedge initial condition (for an al-
ternative approach using the replica trick see also [19, 23]).

2 Results

Here we present the limit results, first for TASEP, then for last passage percolation and
we end with random matrices. The limit processes in the following statements are defined
in Sect. 2.4.
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2.1 Continuous Time TASEP

We want to analyze the fluctuations of the height function (1.1) with respect to the macro-
scopic behavior. Thus, the first quantity we need to determine is the limit shape

hma(ξ) := lim
t→∞

1

t
ht (
ξ t�) (2.1)

which can be obtained by integrating the asymptotic macroscopic density of particles,
�(ξ, τ ), given heuristically by

�(ξ, τ ) := lim
T →∞

P(there is a particle at [ξT ] at time τT ). (2.2)

The average current of particles for a density � is �(1 − �), thus � satisfies Burgers equa-
tion [51]

∂τ� + ∂ξ (�(1 − �)) = 0. (2.3)

The initial condition �(ξ,0) = ρ− for ξ < 0 and �(ξ,0) = ρ+ for ξ > 0 gives:

(a) for ρ− ≥ ρ+,

�(ξ,1) =

⎧
⎪⎨

⎪⎩

ρ− for ξ ≤ 1 − 2ρ−,

(1 − ξ)/2 for ξ ∈ [1 − 2ρ−,1 − 2ρ+],
ρ+ for ξ ≥ 1 − 2ρ+,

(2.4)

(b) while for ρ− < ρ+,

�(ξ,1) =
{

ρ− for ξ < 1 − (ρ− + ρ+),

ρ+ for ξ > 1 − (ρ− + ρ+).
(2.5)

The characteristic lines,1 (t, x(t))t≥0, of the Burgers equation with constant density ρ are
straight lines with speed 1 − 2ρ: {x(t) − x(0) = (1 − 2ρ)t, t ≥ 0}. In the case of non-
constant density (see case (a)), then all the rays leaving from the origin with speed ξ ∈
[1 − 2ρ−,1 − 2ρ+] are also characteristic lines (see Fig. 2).

Translated into the limit shape using (1.1), one obtains:

(a) for ρ− ≥ ρ+,

hma(ξ) =

⎧
⎪⎨

⎪⎩

2ρ−(1 − ρ−) + (1 − 2ρ−)ξ for ξ ≤ 1 − 2ρ−,

(1 + ξ 2)/2 for ξ ∈ [1 − 2ρ−,1 − 2ρ+],
2ρ+(1 − ρ+) + (1 − 2ρ+)ξ for ξ ≥ 1 − 2ρ+,

(2.6)

(b) while for ρ− < ρ+,

hma(ξ) =
{

2ρ−(1 − ρ−) + (1 − 2ρ−)ξ for ξ < 1 − (ρ− + ρ+),

2ρ+(1 − ρ+) + (1 − 2ρ+)ξ for ξ > 1 − (ρ− + ρ+).
(2.7)

This is illustrated in Fig. 1.

1These characteristics are the ones coming from the entropy condition [25, 61].
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Fig. 1 The asymptotic density �

and the limit shape in the cases
(a) ρ− > ρ+ and (b) ρ− < ρ+ .
Transitions happen at
ξ± = 1 − 2ρ± and shockwave at
ξs = 1 − (ρ− + ρ+). The
fluctuations processes are also
indicated: B and B′ two
independent standard Brownian
motions, A2 the Airy2 process,
ABM→2 is the transition process
from Brownian behavior to Airy2
process, and A2→BM is its
time-reversed version. See
Sect. 2.4 for definitions

For simplicity, we discuss the fixed time fluctuation results of our main Theorem 2.1,
which is however more general and holds for unequal times too. Concerning the fluctuations
for ρ− �= ρ+, if we focus around a macroscopic position ξ t we have:

Case (a) and 1 − 2ρ− < ξ < 1 − 2ρ+: the limit shape is curved and the behavior is
like the one of step-initial condition, namely, for large time t the fluctuations scale as t1/3,
correlations as t2/3, and the multi-point statistics are governed by the Airy2 process, A2.
More precisely, there are two coefficients κh = (2(1 − ξ)2)1/3 and κv = −(1 − ξ 2)2/3/21/3

depending only on ξ (compare with (2.9) below) such that for large time t ,

h(ξ t + τκht
2/3) 
 thma(ξ + τκht

−1/3) + κv A2(τ )t1/3. (2.8)

Case (a) and ξ = 1 − 2ρ− (or ξ = 1 − 2ρ+): the influence of the randomness in the
initial condition and the randomness built up by the dynamics are of the same order. The
fluctuations of ht are on the t1/3 scale with correlation scale t2/3 and are governed by a
transition process ABM→2 between Brownian Motion behavior and the Airy2 process.

Case (a) and ξ < 1−2ρ− (or ξ > 1−2ρ+) or Case (b) away from the shock position: the
influence of the initial randomness dominates and one has simply Brownian Motion (with
fluctuations scale t1/2 and correlation scale t ). The two sides are asymptotically independent.

Case (b) at the shock position: the statistics of the height function is influenced by both
the right and left particle densities.

The stationary case, ρ− = ρ+ = ρ was analyzed already in [6] (see Theorem 1.7 therein).
At ξ = 1 − 2ρ the fluctuations are of order t1/3 and there is a transition process Astat over a
distance of order t2/3 to the Gaussian behavior.

In a related model [31] the following slow decorrelation phenomenon was noticed: along
the characteristic lines the height-height correlations live on a longer space-time scale than
the fixed-time correlation scale. For instance, in the rarefaction fan, the height function at
two space-time points on the same characteristic line, the first at time T and the second at
time T +T ν , ν < 1, will differ by a deterministic factor (speed of growth × T ν ) plus o(T 1/3).
This means that the two height functions (centered and rescaled by T −1/3) are asymptotically
the same random variable (i.e., they are perfectly correlated on the T 1/3 scale). The proof
in [31] uses several results of other papers and a considerable amount of work is needed to
reproduce them for other models. While looking for a proof for the TASEP, we discovered
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a much simpler proof, which applies not only to TASEP but to a large number of models in
the KPZ class, see [20]. The statement for TASEP is reported in Proposition 2.5.

This allows us to extend the fixed-time statement to space-time. This is the reason for the
following limit theorem: for ξ ∈ [1 − 2ρ−,1 − 2ρ+], let us set

X(τ, θ) = 
ξ(T + θT ν) + τ(2(1 − ξ 2))1/3T 2/3�,

H(τ, θ, s) = 1 + ξ 2

2
(T + θT ν) + ξτ (2(1 − ξ 2))1/3T 2/3 (2.9)

+ (τ 2 − s)
(1 − ξ 2)2/3

21/3
T 1/3.

The value of H(τ, θ,0) is a generalization of the term thma(ξ + τκht
−1/3) in (2.8), namely

the macroscopic approximation. Indeed,

H(τ, θ,0) = (T + θT ν)
1

2

(

1 +
(

X(τ, θ)

T + θT ν

)2)

+ o(T 1/3), (2.10)

compare with (2.6), while H(τ, θ, s)−H(τ, θ,0) measures the fluctuations. The definitions
of the limit processes occurring in the following theorem are collected in Sect. 2.4.

Theorem 2.1

(a) Fix m ∈ N, ν ∈ [0,1), ξ ∈ R, and ρ+ ∈ (0,1], ρ− ∈ [0,1). Then, for any choice of real
numbers τ1 < τ2 < · · · , τm, θ1, . . . , θm, and s1, . . . , sm, we have:
(a1) If ρ+ < ρ− and ξ ∈ (1 − 2ρ−,1 − 2ρ+), then

lim
T →∞

P

(
m⋂

k=1

{hT +θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P

(
m⋂

k=1

{A2(τk) ≤ sk}
)

. (2.11)

(a2) If ρ+ < ρ− and ξ = 1 − 2ρ−, then

lim
T →∞

P

(
m⋂

k=1

{hT +θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P

(
m⋂

k=1

{ABM→2(τk) ≤ sk}
)

. (2.12)

(a3) If ρ+ = ρ− ≡ ρ and ξ = 1 − 2ρ, then

lim
T →∞

P

(
m⋂

k=1

{hT +θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P

(
m⋂

k=1

{Astat(τk) ≤ sk + τ 2
k }
)

. (2.13)
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Fig. 2 Illustration of the characteristic lines for (a) ρ− > ρ+ and (b) ρ− < ρ+ . The fluctuations of the black
points depend on fluctuation of their projections to the t = 0 line. Points on the shockwave, the gray points,
depend on the projections on the two directions. Finally, the fluctuations in the rarefaction fan (white points)
do not depend on the initial randomness

(b) Fix m ∈ N, and ρ+ ∈ (0,1], ρ− ∈ [0,1). Fix ml,ms,mr ∈ Z
∗+ and set m = ml +ms +mr

and real numbers θ1, . . . , θm. Consider a set of m space-time points with macroscopic
coordinates (ξiθiT , θiT ). Let ml of the points be such that ξi < 1 − ρ− − max{ρ+, ρ−},
mb such that ξi > 1 − ρ+ − min{ρ+, ρ−}, and ms on the shockwave (ξi = 1 − ρ+ − ρ−
if ρ+ > ρ−). Then

lim
T →∞

P

(
m⋂

k=1

{hθkT (ξkθkT ) ≥ hma(ξk)θkT − 2skT
1/2}

)

= P

(
ml+ms⋂

k=1

{B (θk(1 − 2ρ− − ξk)(ρ−(1 − ρ−))) ≤ sk}
)

× P

⎛

⎝
m⋂

k=ml+1

{
B′ (θk(ξk + 2ρ+ − 1)(ρ+(1 − ρ+)) ≤ sk

}

⎞

⎠ . (2.14)

where B and B′ are two independent copies of Brownian Motion.

Remark 2.2 Although in the statement we fix θ1, . . . , θm, the same holds true if they depend
on T provided that they are uniformly bounded in T . What we need is that there exists a
ν < 1 such that limT →∞ ln(|θkT

ν |)/ ln(T ) < 1. For instance, we can take θkT
ν = θ̃kT

2/3

with θ̃k fixed real numbers.

Remark 2.3 The case ρ+ < ρ− and ξ = 1−2ρ+ can be recovered from (a2) by particle-hole
symmetry. The entries in the Brownian motions in (2.14) are (proportional to) the projections
of the space-time points to time t = 0 along the characteristics to the initial conditions;
the proportionality takes just into account the variance of the random walk of the initial
condition. This is illustrated in Fig. 2.

The proof of Theorem 2.1 is in Sect. 3.4. It is a consequence of the corresponding re-
sult for last passage percolation (see Theorem 2.9), together with the slow decorrelation
phenomena (see Proposition 2.5). The stationary case, (a3), was analyzed in [6] (see The-
orem 1.7 therein); the τ 2

k term in (2.13) compensates the fact that the scaling (2.9) is not
following the (straight) limit shape approximation. For presentation simplicity in [6] only
the fixed-time result was stated, but slow decorrelation allow immediately to extend it as in
Theorem 2.1.
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2.2 Directed Percolation

In Sect. 2.2.1 we explain the precise connection between TASEP and last passage perco-
lation (LPP). In Proposition 2.8 we give the asymptotics for one-sided LPP, which uses
the determinantal structure of the Schur process and slow decorrelation. The extension to
two-sided boundary conditions via coupling arguments is stated in Theorem 2.9.

2.2.1 Connection with TASEP

We define a directed last passage percolation model by assigning random waiting times
wi,j to each site (i, j) in (Z∗+)2 (Z∗+ = {0,1, . . .}). We require wi,j ’s are independent and
exponentially distributed variables2 (to be specified below). To every directed (up/right only)
path π from (0,0) to (x, y) we associate the waiting time T (π) = ∑

(i,j)∈π wi,j . Then, the
last passage time from (0,0) to (x, y) is the longest waiting time over all directed paths:

L(x, y) = max
π :(0,0)→(x,y)

T (π). (2.15)

It is well known that the height function for TASEP with our initial condition is express-
ible in terms of a LPP model. Let us shortly recall this connection which is established in
full generality in [48] and briefly reexplained [6], extending the step-initial condition case
considered in [35]. We label particles from right to left and denote by xk(t) the position of
particle k at time t . We set the label so that · · · < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · .

(a) For i, j ≥ 1, wi,j is the waiting time that particle j jump from site i − j − 1 to site i − j

(of course, the waiting time counted from the instant where site i − j is empty). Thus,
wi,j ∼ Exp(1) random variables, i, j ≥ 1.

(b) On the other hand, the effect on the dynamics on x0(t) due to the particles on the its
right is equivalent to set the jump rate of particle 0 to be 1 − ρ+ instead of 1. This is
a consequence of Burke’s Theorem [18]. Therefore we set wi,0 ∼ Exp(1/(1 − ρ+)) for
i > x0(0) and wi,1 = 0 otherwise.

(c) By looking at the particle-hole transformation, we set w1,j ∼ Exp(1/ρ−) for j ≥ −x1(0)

and w0,j = 0 otherwise. Finally, we set w0,0 = 0.

With this settings, the correspondence between last passage time, particle positions, and
height function is the following: for xk , yk ≥ 1, tk > 0, we have

P

(
m⋂

k=1

{L(xk, yk) ≤ tk}
)

= P

(
m⋂

k=1

{xyk
(tk) ≥ xk − yk}

)

= P

(
m⋂

k=1

{htk (xk − yk) ≥ xk + yk}
)

. (2.16)

Since x0(0) ∼ Geom(1 − ρ+) and −(1 + x1(0)) ∼ Geom(ρ−), we can set
wi,1 ∼ Exp(1/(1 − ρ+)) for all i ≥ 1, and w1,j ∼ Exp(1/ρ−) for all j ≥ 1 without changing
the large time asymptotics (see e.g. Proposition 2.2 in [32]) (but keeping w0,0 = 0).

2We use the notation Exp(m) for a random variable which is exponentially distributed with mean m.
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2.2.2 One-sided LPP

As briefly mentioned in the introduction, the proof of our result uses a mixture of analytic
and probabilistic methods. On the analytic side, we have to analyze the following LPP model
(referred as one-sided LPP):

wi,j =

⎧
⎪⎨

⎪⎩

Exp(1) for i, j ≥ 1,

Exp(1/η) for i = 0, j ≥ 1,

0 for i ≥ 0, j = 0,

(2.17)

where η ∈ (0,1] is a constant. We denote by L1 the last passage time for the waiting times
(2.17), where 1 stands for one-sided. This problem is related to TASEP with ρ+ = 0 and
ρ− = η. Moreover, see Sect. 2.3, the statistics of L1 are related to those of the largest eigen-
value of a perturbed Wishart (sample covariance) matrix.

To set the scaling variables, we need an expression for the limit shape. Let us focus along
the line y = γ 2x. There are two cases:

(a) for γ (1 + γ )−1 ≤ η ≤ 1,

lim
T →∞

1

T
L1(ξT , ξγ 2T ) = ξ(1 + γ )2, (2.18)

(b) for 0 < η ≤ γ (1 + γ )−1,

lim
T →∞

1

T
L1(T , γ 2T ) = 1

1 − η
+ γ 2

η
. (2.19)

In the regime where the limit shape is (2.18), the fluctuations of L1 are of random matrix
type with correlation on the T 2/3 scale and fluctuations in the T 1/3 scale. Therefore we
introduce the scaling

x(τ) =
⌊

1

(1 + γ )2
T + 2τ

(1 + γ )2/3γ 2/3
T 2/3

⌋

,

y(τ ) =
⌊

γ 2

(1 + γ )2
T

⌋

, (2.20)


(τ, s) = T + 2τ(1 + γ )1/3

γ 2/3
T 2/3 + (s − τ 2)

(1 + γ )2/3

γ 1/3
T 1/3,

where the parameter s is a measure of the fluctuations with respect to 
(τ,0), that is what
we expect to see from (2.18). Under this scaling, the height fluctuations are governed by
the Airy2 process, A2, up to the critical value η = γ (1 + γ )−1 where there is a transition
process, ABM→2, to the Brownian motion behavior. In the regime where the limit shape is
(2.19), the fluctuations will be governed by the boundary sources. They have fluctuation on
the T 1/2 scale, correlation length of order T and limit process the Brownian Motion, B. This
is precisely stated in following theorem.

Proposition 2.4 Let A2, ABM→2 and B be the processes defined in Sect. 2.4.

(a) Fix m ∈ N, η ∈ (0,1] and γ ∈ (0,∞) with η ≥ γ (1 + γ )−1. Then, for any given
τ1 < τ2 < · · · < τm and s1, . . . , sm ∈ R, we have:
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(a1) if η > γ (1 + γ )−1, then

lim
T →∞

P

(
m⋂

k=1

{L1(x(τk), y(τk)) ≤ 
(τk, sk)}
)

= P

(
m⋂

k=1

{A2(τk) ≤ sk}
)

, (2.21)

(a2) while if η = γ (1 + γ )−1, then

lim
T →∞

P

(
m⋂

k=1

{L1(x(τk), y(τk)) ≤ 
(τk, sk)}
)

= P

(
m⋂

k=1

{ABM→2(τk) ≤ sk}
)

.

(2.22)
(b) Fix m ∈ N, η ∈ (0,1]. Then, for any given γ1 < γ2 < · · · < γm such that

η < γ1(1 + γ1)
−1, and s1, . . . , sm ∈ R, we have

lim
T →∞

P

(
m⋂

k=1

{

L1(T , γ 2
k T ) ≤

(
γ 2

k

η
+ 1

1 − η

)

T + skT
1/2

})

= P

(
m⋂

k=1

{

B
([

γ 2
k

η2
− 1

(1 − η)2

])

≤ sk

})

. (2.23)

This theorem is proved in Sect. 3.1 using the Schur process and applying methods of
asymptotic analysis. Having established this theorem for the one-sided boundary condition
model above we use coupling methods to prove a general two-sided boundary condition
theorem.

To understand intuitively the cutoff η = γ (1 + γ )−1 there is a simple argument. The last
passage path (the random directed path which achieves the last passage time) goes along
the left boundary for some distance and then will depart. Restricting the set of paths to
only those which go a certain macroscopic distance along the boundary and then depart
into the bulk, one may use independence of the boundary and the bulk to establish a law of
large number and fluctuation theorem for the restricted last passage time. If the mean 1/η

of the boundary waiting times is large enough (η small enough), the restricted law of large
numbers will be maximized for a positive macroscopic distance along the boundary. In this
case, the fluctuations will come entirely from the boundary fluctuations and they will be
given by the standard CLT: Gaussian fluctuations on the scale T 1/2. On the other hand, if the
boundary waiting times are too small, the restricted law of large numbers will be maximized
for a distance along the boundary of o(T 2/3), and hence the fluctuations will come from the
bulk, which are known to be T 1/3 and GUE Tracy-Widom distributed. At the cutoff, the two
fluctuations compete and yield a perturbation of the bulk fluctuations. This intuition will be
useful in some of the arguments used in this paper.

To extend Proposition 2.4 to points which have different y coordinates we use the fact
that in certain directions (the characteristics) the last passage time fluctuations decorrelate
not in the scale T 2/3 but rather in the scale of order T . This means that the passage time at
two points at distance o(T ) but on the same characteristic have the same fluctuations (up to
o(T 1/3)). This phenomena, known as slow decorrelation,3 was observed (and proven) in the

3For flat interfaces as considered in [38] the dynamic scale invariance [41] implies a scaling form for the
temporal autocorrelation, from which one could expect to see a slow-decorrelation type of phenomenon. This
phenomenon is also related with what is known as persistence, see [38] for KPZ class and [40] for Gaussian-
type models.
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related PNG model in [31] and then extended to a much greater generality within models in
the KPZ universality class [20]. We recall the result needed here below.

The characteristic lines for TASEP with particle density ρ move with speed 1 − 2ρ. In
the present LPP picture this implies the following:

(a) if γ ≤ η

1−η
, the line y = γ 2x is a characteristic related to the rarefaction fan of TASEP,

(b) while in the case γ >
η

1−η
, the characteristic passing by (T , γ 2T ) is given by

y = T γ 2 + (x − T )η2(1 − η)−2. (2.24)

With these preliminaries, we can state the slow decorrelation theorem for LPP.

Proposition 2.5 (Corollary of Theorem 2.2 of [20])

(a) For γ ≤ η

1−η
, define

P =
(⌊

T

(1 + γ )2

⌋

,

⌊
γ 2T

(1 + γ )2

⌋)

, Q =
(⌊

T + r

(1 + γ )2

⌋

,

⌊
γ 2(T + r)

(1 + γ )2

⌋)

.

(2.25)
Then, for any r ∼ T ν with ν ∈ [0,1) and any given M > 0, it holds

lim
T →∞

P(|L1(Q) − L1(P ) − r| ≥ MT 1/3) = 0. (2.26)

(b) For γ >
η

1−η
, define

P = (
T �, 
γ 2T �), Q = (
T + r�,⌊γ 2T + rη2(1 − η)−2
⌋)

. (2.27)

Then, for any r ∼ T ν with ν ∈ [0,3/2) and any given M > 0, it holds

lim
T →∞

P

(∣
∣
∣
∣L1(Q) − L1(P ) − r

(1 − η)2

∣
∣
∣
∣≥ MT 1/2

)

= 0. (2.28)

Remark 2.6 In Proposition 2.5 γ can be also chosen to be T -dependent, provided that it
converges to a fixed number in the T → ∞ limit.

Remark 2.7 We will use a generalization of Proposition 2.5 to joint distributions. We let r

be a vector r = (r1, r2, . . . , rm) with each ri ∼ T νi . Let us interprete P and L1(P ) as vectors
P = (P1,P2, . . . ,Pm) and L1(P ) = (L1(P1),L1(P2), . . . ,L1(Pm)), and similarly for Q and
L1(Q). Then, the theorem still holds, with absolute values replaced by Euclidean norms.
Case (a) holds for max(νi) < 1 and case (b) for max(νi) < 3/2). This follows directly from
triangular inequality the union probability bound.

As immediate application of Proposition 2.5 (and Remark 2.7) is the extension of Propo-
sition 2.4 away from the fixed-y line. Indeed, often one considers the cut x + y = t and t

is then interpreted as the time parameter in a stochastic growth model (see e.g. [36, 49]).
For that reason we consider the following modification of the scaling (2.20): for a given
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ν ∈ [0,1),

x(τ, θ) =
⌊

1

(1 + γ )2
(T + θT ν) + τ

2γ 4/3

(1 + γ 2)(1 + γ )2/3
T 2/3

⌋

,

y(τ, θ) =
⌊

γ 2

(1 + γ )2
(T + θT ν) − τ

2γ 4/3

(1 + γ 2)(1 + γ )2/3
T 2/3

⌋

,


(τ, θ, s) = T + θT ν + τ
2γ 1/3(1 + γ )1/3(γ − 1)

1 + γ 2
T 2/3

+ (s − τ 2)
(1 + γ )2/3

γ 1/3
T 1/3.

One might have noticed that in the scaling (2.29) we extend x and y along the characteristic
for τ = 0, which is not exactly the characteristic for τ �= 0. However, this is not a problem,
since the projection of (x(τ, θ), y(τ, θ)) along the true characteristic on the line x + y =

1+γ 2

(1+γ )2 T is (x(τ̃ ,0), y(τ̃ ,0)) with τ̃ = τ + o(1). Then, the extension of Proposition 2.4 to
the scaling (2.29) is the following.

Proposition 2.8

(a) Fix m ∈ N, ν ∈ [0,1), η ∈ (0,1], and γ ∈ (0,∞) such that η ≥ γ (1 + γ )−1. Then, for
any given real numbers τ1 < τ2 < · · · < τm, θ1, . . . , θm and s1, . . . , sm, we have:
(a1) if η > γ (1 + γ )−1, then

lim
T →∞

P

(
m⋂

k=1

{L1(x(τk, θk), y(τk, θk)) ≤ 
(τk, θk, sk)}
)

= P

(
m⋂

k=1

{A2(τk) ≤ sk}
)

, (2.30)

(a2) while if η = γ (1 + γ )−1, then

lim
T →∞

P

(
m⋂

k=1

{L1(x(τk, θk), y(τk, θk)) ≤ 
(τk, θk, sk)}
)

= P

(
m⋂

k=1

{ABM→2(τi) ≤ sk}
)

. (2.31)

(b) Fix m ∈ N, η ∈ (0,1]. Then, for any given γ1 < γ2 < · · · < γm such that
η < γ1(1 + γ1)

−1, and s1, . . . , sm ∈ R, it holds

lim
T →∞

P

(
m⋂

k=1

{

L1(θkT , γ 2
k θkT ) ≤

(
γ 2

k

η
+ 1

1 − η

)

θkT + skT
1/2

})

= P

(
m⋂

k=1

{

B
(

θk

[
γ 2

k

η2
− 1

(1 − η)2

])

≤ sk

})

. (2.32)
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2.2.3 Two-sided LPP

The main object of interest in this paper is last passage percolation with two-sided boundary
conditions defined as follow. Given two paramaters π,η ∈ (0,1], the independent waiting
times wi,j satisfy

wi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Exp(1/π) for i ≥ 1, j = 0,

Exp(1/η) if i = 0, j ≥ 1,

Exp(1) if i, j ≥ 1,

0 for i = 0, j = 0.

(2.33)

We denote by L2 the last passage percolation time for the waiting times (2.33), where the
subscript 2 stands for the two-sided. This corresponds with TASEP with two-sided Bernoulli
initial conditions. The connection with two-sided Bernoulli initial condition for TASEP is
obtained by setting η = ρ− and π = 1 − ρ+.

The new phenomenon that occurs for two-sided LPP with respect to one-sided is the
possible presence of shockwaves in the corresponding TASEP picture. This occurs when
π + η < 1, i.e., when characteristics meet. Indeed, the characteristic leaving from the axis
(R+,0) have slope (1 − π)2π−2 and, whenever η + π < 1, they meet the characteristics
leaving from the (0,R+) axis, whose slope is η2(1 − η)−2. The slope of the shockwave is
determined by the Rankine-Hugoniot condition and it is given by the equation

y = η(1 − π)

π(1 − η)
x. (2.34)

The limit shape is not anymore always as in (2.32) but depends on the which side of the
shockwave we focus on S(γ ) ≡ limT →∞ 1

T
L2(T , γ 2T ) given by

S(γ ) =
⎧
⎨

⎩

γ 2

η
+ 1

1−η
, if π ≤ (1 + γ )−1, η < γ (1 + γ )−1, γ 2 >

η(1−π)

π(1−η)
,

γ 2

1−π
+ 1

π
, if π < (1 + γ )−1, η ≤ γ (1 + γ )−1, γ 2 <

η(1−π)

π(1−η)
.

(2.35)

When η + π < 1, then the fluctuations are dominated by the boundary terms and live on a
T 1/2 scale, while the bulk contribution to the fluctuations is only on a T 1/3 scale. Therefore,
the limit process describing the fluctuations on each side of (not including) the shockwave
is given by the Brownian motion obtained as the boundary contribution from the origin to
the projections along the characteristics of the points we focus on. Thus, the two side of
the shockwave will be independent. On the shockwave, there is a balance between the two
boundary contributions: the last passage time for a point P on the shockwave is the maxi-
mum between the last passage time of the one-sided problem with wi,0 = 0 and the trans-
posed one-sided problem w0,j = 0. Since the fluctuations come only from the boundaries,
the distribution of P will be the product of the distribution of the two one-sided problems,
see Fig. 2.

This intuitive picture is confirmed by Theorem 2.9, which can be obtained from Propo-
sition 2.8 without any additional hard analysis by using coupling arguments introduced
in [10].

Theorem 2.9 Consider the same scaling (2.29) as in Proposition 2.8.

(a) Fix m ∈ N, η,π ∈ (0,1], γ ∈ (0,∞), and ν ∈ [0,1). Then, for any choice of real num-
bers τ1 < τ2 < · · · , τm, θ1, . . . , θm, and s1, . . . , sm, we have:
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(a1) If π > (1 + γ )−1 and η > γ (1 + γ )−1, then

lim
T →∞

P

( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ 
(τk, θk, sk)}
)

= P

( m⋂

k=1

{A2(τk) ≤ sk}
)

. (2.36)

(a2) If π > (1 + γ )−1 and η = γ (1 + γ )−1, then

lim
T →∞

P

( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ 
(τk, θk, sk)}
)

= P

( m⋂

k=1

{ABM→2(τk) ≤ sk}
)

. (2.37)

(a3) If π = (1 + γ )−1 and η = γ (1 + γ )−1, then

lim
T →∞

P

( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ 
(τk, θk, sk)}
)

= P

( m⋂

k=1

{Astat(τk) ≤ sk + τ 2
k }
)

. (2.38)

(b) Fix ml,ms,mb ∈ Z
∗+ and set m = ml + ms + mb . ml is the number of points associated

with characteristics from the left boundary of the LPP, mb to the bottom boundary, and
ms on the shockwave (if exists). For π,η ∈ (0,1] and real numbers θ1, . . . , θm, choose
γi corresponding to each case. Then

lim
T →∞

P

(
m⋂

k=1

{L2(θkT , γ 2
k θkT ) ≤ S(γk)θkT + skT

1/2}
)

= P

(
ml+ms⋂

k=1

{

B
(

θk

[
γ 2

k

η2
− 1

(1 − η)2

])

≤ sk

})

× P

⎛

⎝
m⋂

k=ml+1

{

B′
(

θk

[
1

π2
− γ 2

k

(1 − π)2

])

≤ sk

}
⎞

⎠ , (2.39)

where B and B′ are two independent copies of Brownian Motion.

Remark 2.10 The case π = (1 + γ )−1 and η > γ (1 + γ )−1 can be recovered by Theo-
rem 2.9(a2) by the change of variable (x, y) → (y, x) and γ → γ −1.

Because of the nice correspondence with the TASEP, we focused here on LPP with two-
sided “of width one”, i.e., with modified weights only for i = 0 and j = 0 in (2.33). From
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a LPP point of view a natural extension is to consider weights different from 1 for a larger
number of columns/rows. For example, the one-sided with boundary width equal to r was
considered in [5]. Like for the Airy2 process [2], also one can describe joint distributions by
PDE’s [1]. For an extension to two-sided thick boundaries, see [17]. The particular case of
boundaries of sizes 1 and r corresponds, in terms of TASEP, to Bernoulli initial condition
on Z− with the first r particles having a different jump rate [16]. The coupling techniques
would also work, except to the critical cases (like η + π = 1).

2.3 Random Sample Covariance Matrices

We now give a random matrix interpretation of our result. For that purpose, we use a re-
sult proven in [22]. Consider an infinite array A(N) = [Ai,j ]i≥1,1≤j≤N where the Ai,j are
independent complex Gaussian random variables with mean zero and variance 1/(πi + π̃j ).
Define A(n,N) to be the matrix obtained by considering the first n rows from A. Define
the N × N matrix MN(n) := A(n,N)∗A(n,N) and denote by λN,max(n) its largest eigen-
value.

Let also L(n,N) be the last passage time from (1,1) to (n,N) in the percolation model
with independent exponential random variables with expectations 1/(πi + π̃j ). Then it is
proved in [17] and [22] that the process n �→ λN,max(n) and the process of last passage times
n �→ L(n,N) have the same distributions. Therefore, from Proposition 2.4 we deduce the
following.

Theorem 2.11 Set πi = 1 − η, i ≥ 2, π1 = 0, π̃j = η, j ≥ 1.

(a) Fix m ∈ N, γ ∈ (0,∞) and η ∈ (0,1]. Recall x(τk), y(τk), and 
(τk, sk) defined

in (2.20). Set N = y(τk) = 
 γ 2

(1+γ )2 T �.

(a1) If η >
γ

1+γ
, then for real numbers τ1 < τ2 < · · · < τm and s1, . . . , sm it holds

lim
T →∞

P

(
m⋂

k=1

{λN,max(x(τk)) ≤ 
(τk, sk)}
)

= P

(
m⋂

i=1

{A2(τi) ≤ si}
)

. (2.40)

(a2) If η = γ

1+γ
, then for real numbers τ1 < τ2 < · · · < τm and s1, . . . , sm it holds

lim
T →∞

P

(
m⋂

k=1

{λN,max(x(τk)) ≤ 
(τk, sk)}
)

= P

(
m⋂

i=1

{ABM→2(τi) ≤ si}
)

. (2.41)

(b) Fix m ∈ N, η ∈ (0,1]. Set N = 
T �, then for any γ1 < γ2 < · · · < γm such that
η < γ1(1 + γ1)

−1, and s1, . . . , sm ∈ R, it holds

lim
T →∞

P

(
m⋂

k=1

{

λN,max(γ
2
k T ) ≤

(
γ 2

k

η
+ 1

1 − η

)

T + skT
1/2

})

= P

(
m⋂

k=1

{

B
([

γ 2
k

η2
− 1

(1 − η)2

])

≤ sk

})

. (2.42)
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2.4 Limit Processes: Definitions

Here we collect the definitions of the limit processes.

Definition 2.12 (Airy2 process, A2) The Airy2 process is defined in terms of finite dimen-
sional distributions as

P

(
m⋂

k=1

{A2(τk) ≤ sk}
)

= det(1 − χsKA2χs)L2({τ1,...,τm}×R), (2.43)

where χs(τk, x) = 1[x>sk ], and KA2 is the extended Airy kernel:

KA2(τ, s; τ ′, s ′) =
{∫

R+ dze(τ ′−τ)z Ai(s + z)Ai(s ′ + z), τ ≥ τ ′,
− ∫

R− dze(τ ′−τ)z Ai(s + z)Ai(s ′ + z), τ < τ ′.
(2.44)

The Airy2 process was discovered in the PNG model [49]. It is a stationary process with
one-point distribution given by the GUE Tracy-Widom distribution F2 [55]. An integral
representation of KA2 can be found in Proposition 2.3 of [36]; another form is in Definition
21 of [16] in the M = 0 case.

Definition 2.13 We denote by ABM→2 the transition process from Brownian Motion to
Airy2. It is defined in terms of finite dimensional distributions as

P

(
m⋂

k=1

{ABM→2(τk) ≤ sk}
)

= det(1 − χsKABM→2χs)L2({τ1,...,τm}×R), (2.45)

where χs(τk, x) = 1[x>sk ], and KABM→2 is the rank-one perturbation KA2 :

KABM→2(τ, s; τ ′, s ′)

= KA2(τ, s; τ ′, s ′) + Ai(s)

(

e
1
3 τ ′3−s′τ ′ −

∫

R+
dzeτ ′z Ai(s ′ + z)

)

. (2.46)

This transition process was derived in [33]. In (3.6) of [33] the kernel is divided into two
cases. However, using the identity (D.3) in [32], namely,

∫

R
dyewy Ai(β + y) = ew3/3−βw ,

we can rewrite

KABM→2(τ, s; τ ′, s ′) = KA2(τ, s; τ ′, s ′) + Ai(s)
∫

R+
dze−τ ′z Ai(s ′ − z) (2.47)

for τ ′ > 0.
An integral representation of the kernel KABM→2 can be found in [16], Definition 21, in

the M = 1 case. To see the Brownian Motion behavior, one has to take the τ � −1 and
replace s by s + τ 2. This shift is needed to take into account that the actual limit shape at
the critical point changes from (2.18) to (2.19). So, for large −τ , the approximation coming
from (2.18) is not optimal anymore. Indeed, using (2.19), s − τ 2 would be replaced by s

in (2.20).
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The definition of the process for stationary TASEP, Astat, is quite intricate [6]. Its joint
distributions is the r.h.s. of (1.9) in [6].

Definition 2.14 The last process, B, is simply a standard one dimensional Brownian motion.
Its finite dimensional distributions can be expressed in terms of a Fredholm determinant: let
0 < τ1 < · · · < τm, then

P

(
m⋂

k=1

{B(τk) ≤ sk}
)

= det(1 − χsKBχs)L2({τ1,...,τm}×R), (2.48)

where χs(τk, x) = 1[x>sk ], and the kernel KB is given by

KB(τ, s; τ ′, s ′) = 1√
2πτ

exp

(

− s2

2τ

)

− 1[τ>τ ′]√
2π(τ − τ ′)

exp

(

− (s − s ′)2

2(τ − τ ′)

)

. (2.49)

3 Proof of Results

3.1 Proof of Proposition 2.4

Let n,N be positive integers. Consider the directed percolation model with one-sided bound-
ary conditions (2.17). Let L1(n,N) be the last passage times from (0,0) to (n,N). The
joint distribution of L1(n,N),n ≥ 0 can be analyzed thanks to the so-called Schur process
studied in [17].4 In particular the joint distribution of the last passage times in the directed
percolation model is given by:

P

(
m⋂

k=1

{L1(nk,N) ≤ Sk}
)

= det(1 − PSKNPS)L2({n1,...,nm}×R), (3.1)

where PS(k, x) := 1[x>Sk ] and KN is the correlation kernel given by

KN(ni, x;nj , y) = −�ni,nj
(x, y) + K1

N(ni, x;nj , y),

K1
N(ni, x;nj , y) = 1

(2π i)2

∮

C
dz

∮

C′
dw

ewy−zx

w − z

(z + 1 − η)ni−1

(w + 1 − η)nj −1

z

w

(w − η)N

(z − η)N
,

�ni ,nj
(x, y) = 1[ni<nj ]1[x<y]

1

2π i

∮

C′
dwew(y−x)(w + 1 − η)ni−nj ,

(3.2)

where C (resp. C′) is a contour oriented anticlockwise and enclosing η (resp. 0 and η − 1).

4The (N,p) in [17] corresponds to (n − 1,N) in this paper.
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3.1.1 The Case where η >
γ

1+γ

Consider the asymptotics of the correlation kernel with the rescaling5

ni =
(

1

1 + γ

)2

T + 2τi

(1 + γ )2/3γ 2/3
T 2/3, N =

(
γ

1 + γ

)2

T ,

xi = 
̃(τi , si) = T + 2τi(1 + γ )1/3

γ 2/3
T 2/3 + si

(1 + γ )2/3

γ 1/3
T 1/3.

(3.3)

We fix some s0 ∈ R and assume that si ≥ s0 for any i. To give the result we need a few
definitions. Let us set

wc = η − γ

1 + γ
, χ = (1 + γ )1/3

γ 2/3
, ρ = (1 + γ )2/3

γ 1/3
= 1 + γ

γχ
(3.4)

and Z(i) := exp(2τ 3
i /3 + τisi + T Fi(wc) + siT

1/3ρwc) where

Fi(w) = w

(

1 + 2τiχ

T 1/3

)

+ γ 2

(1 + γ )2
ln(w − η)

−
(

1

(1 + γ )2
+ 2τi

T 1/3γρ

)

ln(w + 1 − η). (3.5)

Proposition 3.1 Uniformly for si, sj in a bounded interval, it holds

lim
N→∞

ρT 1/3 Z(i)

Z(j)
K1

N(ni, xi;nj , xj )

=
∫ ∞

0
e−λ(τi−τj ) Ai(si + τ 2

i + λ)Ai(sj + τ 2
j + λ)dλ + O(T −1/3). (3.6)

Furthermore, for any κ > 0, there exists a T0 large enough such that

∣
∣
∣
∣ρT 1/3 Z(i)

Z(j)
K1

N(ni, xi;nj , xj )

∣
∣
∣
∣≤ Ce−κ(si+sj ) (3.7)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and si, sj .

Proof of Proposition 3.1 The proof of Proposition 3.1 relies on a saddle point analysis of the
correlation kernel (3.2) with the rescaling (3.3). We first rewrite the singularity 1/(w − z) in
the kernel (3.2) as

1

w − z
= −

∫ ∞

0
eλ(w−z)ρT 1/3

ρT 1/3dλ. (3.8)

5Comparing (3.3) with (2.20) one sees two minor differences: (a) the integer parts are not explicitly written,

but it is irrelevant for the large T asymptotics and (b) 
̃ does not have the shift by −τ2
i

on si . This is not a
problem, because in our case the τi are chosen in a bounded set. The scaling (2.20) is reobtained in the end
by replacing si + τ2

i
by si .
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This allows us to rewrite K1
N as a product of two integral kernels:

ρT 1/3K1
N(ni, xi;nj , xj ) =

∫ ∞

0
H(τi, si + λ)G(τj , sj + λ)dλ, (3.9)

where

H(τi, si) = ρT 1/3

2π i

∮

C̃
e−T z−2τiχT 2/3zz

(z + 1 − η)
T

(1+γ )2
+2τi

T 2/3
ργ

(z − η)
T (

γ
1+γ

)2 e−siT
1/3ρzdz,

(3.10)

G(τi, si) = ρT 1/3

2π i

∮

C′
eT w+2τiχT 2/3w 1

w

(w − η)
T (

γ
1+γ

)2

(w + 1 − η)
T

(1+γ )2
+2τi

T 2/3
ργ

esiT
1/3ρwdw.

The contour C̃ is like C but instead of anticlockwise it is clockwise oriented. Note that the
two contours C̃ and C′ still cannot cross each other. To perform a saddle point analysis of both
G and H , we consider the first order leading terms in the exponential. Recall Fi from (3.5).
Then for τi in a uniformly (in T ) bounded interval, Fi admits wc defined in (3.4) as unique
critical point. Furthermore

F ′′
i (wc) = 2(1 + γ )2 τi

γρ
T −1/3, F

(3)
i (wc) = −2

(γ + 1)2

γ
. (3.11)

Now we briefly expose the ideas of the asymptotics since such arguments have already
been developed many times (see e.g. [5] or at the beginning of the proof of Lemma 6.1
in [12], where the steps are explained). From the assumption η >

γ

1+γ
it follows wc > 0.

Consider the contours

C1 = {wc + teπ i/3, t ∈ R}, C′
1 = {wc + te2π i/3,0 ≤ t ≤ 2}. (3.12)

Then one has that

d

dt
ReFi

(

wc + t

γ + 1
e2π i/3

)

= −t4 + (γ − 1)t3 − 2γ t2

(t2 − t + 1)(t2 + γ t + γ 2)

− τiχ
t (t + 1)

1 − t + t2
T −1/3. (3.13)

The denominators in (3.13) is positive, being (product of) squared distances between the
poles of the integrand and the integration path, e.g., t2 − t + 1 = (γ + 1)2|wc + t

γ+1e2π i/3 +
1 − η|2. In particular ReFi decreases along C′

1. We now complete the contour in the upper
half-plane as follows. Call w0 the endpoint of C′

1 and set r := |w0 − η + 1|. Let 0 < θ0 < π

be such that w0 = η − 1 + reiθ0 . Define

C′
2 := {η − 1 + reiθ , θ0 ≤ θ ≤ π}. (3.14)

Then it is not hard to see that ReFi decreases along C′
2:

d

dθ
ReFi

(
η − 1 + reiθ

) = −r sin θ

(

1 + 2τiχ

T 1/3
− 1

|−1 + reiθ |2
)

< −cr sin θ, (3.15)
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Fig. 3 The contours C̃ and C′
are slightly deformed in the
neighborhood of wc so that they
don’t touch each other

for some constant c > 0. Thus C′ = C′
1 ∪ C′

2 ∪ C′
1 ∪ C′

2 is a steep descent path for Fi .
For the z-contour, one has that

d

dt
ReFi

(

wc + t

γ + 1
eπ i/3

)

= t4 + t3(γ − 1) + 2γ t2

(1 + t + t2)(t2 − γ t + γ 2)

+ τiχ
t (t − 1)

1 + t + t2
T −1/3. (3.16)

In particular d
dt

ReFi(wc + t
γ+1eπ i/3) > 0 as soon as t ≥ 1

2 γ τiχT −1/3. From the latter we

deduce that the main contribution to the z-integral will come from a T −1/3 neighborhood
of wc . The contour C1 is not a steep ascent contour for Fi but is enough for the purpose of
evaluating the integral: it is a steep ascent path for the first order approximation of Fi , that
is forgetting for a while the O(T −1/3) terms in Fi .

In order to take care of the constraint on the contours C̃ and C′ which cannot cross or touch
each other, we now deform the w and z contours in a T −1/3 neighborhood of wc so that the
w- (resp. z-) contour lies to the left (resp. right) of wc (see Fig. 3). As F ′′

i (w) = O(T −1/3),

and F
(3)
i (w) = O(1) in such a neighborhood, the fact that the two contours are moved of

O(T −1/3) from the critical point has no impact on the asymptotics: this follows from a
straightforward Taylor expansion of the exponential term.

We then make the change of variables

w = wc + s

ρT 1/3
, z = wc + t

ρT 1/3
. (3.17)

Then it is not hard to see that for bounded si, sj it holds

1

wc

eT Fi (wc)+siρT 1/3wcH(τi, si) = 1

2π i

∫ ∞eπ i/3

∞e−π i/3
et3/3−si t−τi t

2
dt + O(T −1/3)

= Ai(τ 2
i + si)e

−2τ3
i
/3−τi si + O(T −1/3),

(3.18)

wce
−T Fj (wc)−siρT 1/3wcG(τi, si) = 1

2π i

∫ ∞e2π i/3

∞e−2π i/3
e−s3/3+si s+τi s

2
dt + O(T −1/3)

= Ai(τ 2
i + si)e

2τ3
i
/3+τi si + O(T −1/3).

In the above we used Appendix A in [6] to derive Airy identities. In the case where si > 0,
one also gets the following exponential decay: let κ ′ > 0 be given. Then, as we can modify
the contours C and C′ so that Re(w − wc) < − κ ′

T 1/3ρ
while Re(z − wc) > κ ′

T 1/3ρ
one gets
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that
∣
∣
∣

1

wc

eT Fi (wc)+siρT 1/3wcH(τi, si)

∣
∣
∣≤ C

e−κ ′si

T 1/3
,

∣
∣
∣wce

−T Fj (wc)−siρT 1/3wcG(τi, si)

∣
∣
∣≤ C

e−κ ′si

T 1/3
.

(3.19)

This ensures that

lim
N→∞

ρT 1/3 Z(i)

Z(j)
K1

N(ni, xi;nj , xj ) =
∫ ∞

0
e−λ(τi−τj ) Ai(si + τ 2

i + λ)Ai(sj + τ 2
j + λ)dλ

(3.20)
in the trace-norm class (one can choose κ ′ = max{|τi |, i = 1, . . . ,N} + κ). �

We also need to consider the asymptotics of ρT 1/3�ni,nj
(xi, xj )

Z(i)

Z(j)
.

Proposition 3.2 For |si − sj | in a bounded interval, it holds

ρT 1/3�ni,nj
(xi, xj )

Z(i)

Z(j)
= 1

√
4π(τj − τi)

exp

(

− (sj − si)
2

4(τj − τi)

)

+ O(T −1/3). (3.21)

Furthermore for any κ > 0, there exists a T0 large enough such that
∣
∣
∣
∣ρT 1/3�ni,nj

(xi, xj )
Z(i)

Z(j)

∣
∣
∣
∣≤ Ce−κ|si−sj |+(τi−τj )(si+sj )/2 (3.22)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and si, sj .

Proof of Proposition 3.2 The asymptotics of � are again analyzed through a saddle point
argument. Consider

f (w) := χw − (ργ )−1 ln(w + 1 − η). (3.23)

Then

�ni,nj
(xi, xj ) = 1

2π i

∮

C′
e2(τj −τi )f (w)T 2/3+ρ(sj −si )wT 1/3

dw. (3.24)

The critical point is again wc = η − γ

1+γ
and f ′′(wc) = ρ2 > 0. We choose the contour to be

the circle centered at η − 1 and passing through wc: this is a steep descent path. Making the
change of variables w = wc + it

ρT 1/3 one gets that

ρT 1/3�ni,nj
(xi, xj )e

−f (wc) = 1

2π

∫

R

e−t2(τj −τi )+it (sj −si )dt + O(T −1/3)

= 1
√

4π(τj − τi)
exp

(

− (sj − si)
2

4(τj − τi)

)

+ O(T −1/3). (3.25)

Thus one obtains

ρT 1/3�ni,nj
(xi, xj )e

T (Fi (wc)−Fj (wc))+(si−sj )T 1/3wc+2(τ3
i
−τ3

j
)/3+τi si−τj sj

= 1
√

4π(τj − τi)
exp

(

− (sj − si)
2

4(τj − τi)
+ 2

3
(τ 3

i − τ 3
j ) + τisi − τj sj

)

+ O(T −1/3). (3.26)
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The exponential decay for large sj − si is obtained as in [6], Lemma 21. For large positive
sj − si we can modify the contour so that it lies to the left of wc: Re(w−wc) < −κ ′/(ρT 1/3)

for any arbitrary κ ′ > 0. For large negative sj − si , the contour is modified in the following
way: it is again a circle centered at η − 1 but passing through w̃c := wc + κ ′/(ρT 1/3). It is a
simple computation to check that f decreases along this modified contour and ensures that

∣
∣
∣ρT 1/3�ni,nj

(xi, xj )e
T (Fi (wc)−Fj (wc))+(si−sj )T 1/3wc

∣
∣
∣≤ Ce−κ ′|si−sj |. (3.27)

The complete details to derive (3.22) from the above estimate is given in Lemma 21 in [6]
(choosing again κ ′ ≥ max |τi | + κ). �

Combining Proposition 3.1, Proposition 3.2 and the definitions of Sect. 2.4 yields part
(a1) of Proposition 2.4.

3.1.2 The Case where η = γ

1+γ

The rescaling is still given by (3.3). In this case, wc = 0. We recall that the contour C′ has to
encircle the pole w = 0. Thus to get the exponential decay for large positive si , one needs
to consider a different conjugation of the kernel. Indeed it is no longer possible to deform
the contour C′ so that it lies to the left of wc . On the other hand, it is a well known fact that
conjugation does not impact on the correlation functions of a determinantal random point
process.

Let then δ > 0 be given. Define

Z(i, δ) := exp

(
2

3
τ 3
i + τisi + T Fi(wc) + siρT 1/3

(

wc + δ

ρT 1/3

))

. (3.28)

Proposition 3.3 Uniformly for si, sj in a bounded interval, it holds

lim
N→∞

ρT 1/3 Z(i, δ)

Z(j, δ)
K1

N(ni, xi;nj , xj )

= Ai(si + τ 2
i )e(si−sj )δ

(

e
−2τ3

j
/3−τj sj −

∫ ∞

0
Ai(τ 2

j + sj + x)eτj xdx

)

+ e(si−sj )δ

∫ ∞

0
e−λ(τi−τj ) Ai(si + τ 2

i + λ)Ai(sj + τ 2
j + λ)dλ + O(T −1/3). (3.29)

Furthermore, for any κ > 0, there exists a T0 large enough such that
∣
∣
∣
∣ρT 1/3 Z(i, δ)

Z(j, δ)
K1

N(ni, xi;nj , xj )

∣
∣
∣
∣≤ e−κ(si+sj ) (3.30)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and si, sj .

Proof of Proposition 3.3 Define then

H̃ (τi, si) = (ρT 1/3)2

2π i

∮

C̃
e−T z−2τiχT 2/3zz

(z + 1 − η)
T

(1+γ )2
+2τi

T 2/3
ργ

(z − η)
T (

γ
1+γ

)2 e−siT
1/3ρzdz,

(3.31)
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G̃(τi, si) = 1

2π i

∮

C′
eT w+2τiχT 2/3w 1

w

(w − η)
T (

γ
1+γ

)2

(w + 1 − η)
T

(1+γ )2
+2τi

T 2/3
ργ

esiT
1/3ρwdw.

We can now perform the saddle point analysis of the above kernels. We use the same con-
tours as in the proof of Proposition 3.1 up to the following modifications: the contours C̃ and
C′ are deformed in a T −1/3 neighborhood of wc = 0 so that C′ encircles 0 lying to the left
of w̃c := wc + δ/(ρT 1/3) and C̃ remains to the right of w̃c . Furthermore we can assume that
the distance of these contours to w̃c is at least κ ′/T 1/3. From the preceding, one easily gets
for bounded si that

Z(i, δ)H̃ (τi, si) = esi δ+ 2
3 τ3

i
+τi si

1

2π i

∫ ∞eπ i/3

∞e−π i/3
tet3/3−si t−τi t

2
dt + O(T −1/3)

= esi δ
(−Ai′(τ 2

i + si) + τi Ai(τ 2
i + si)

)
. (3.32)

Similarly

G̃(τi, si)

Z(i, δ)
= e−si δ−2τ3

i
/3−τi si

1

2π i

∫ ∞e2π i/3

∞e−2π i/3

1

t
e−t3/3+si t+τi t

2
dt + O(T −1/3), (3.33)

where the contour passes to the right of 0. Using again Appendix A in [6]

G̃(τi, si)

Z(i, δ)
= e−si δ

(

e−2τ3
i
/3−τi si −

∫ ∞

0
Ai(τ 2

i + si + x)eτixdx

)

+ O(T −1/3). (3.34)

The exponential decay (as in (3.19)) for large positive si follows from the fact that the
w-contour (resp. z-contour) lies to the left (resp. right) of w̃c and with a distance at least
κ ′/T 1/3. Again one shall choose κ ′ ≥ maxi |τi | + κ.

Finally, to derive the asymptotic correlation kernel in the case where si, sj lie in a fixed
bounded set, we use the simple algebra:

∫ ∞

0
e−λ(t−s)dλ

1

(2π i)2

∫ ∞e2π i/3

∞e−2π i/3
ds

∫ ∞eπ i/3

∞e−π i/3
dt

(
t

s
− 1

)
et3/3−si t−τi t

2

es3/3−sj s−τj s2

= 1

(2π i)2

∫ ∞e2π i/3

∞e−2π i/3
ds

∫ ∞eπ i/3

∞e−π i/3
dt

1

s

et3/3−si t−τi t
2

es3/3−sj s−τj s2 , (3.35)

yielding the asymptotic of K1
N given in Proposition 3.3. �

The asymptotic analysis of � for wc = 0 is almost unchanged from the last subsection.
For bounded si − sj , one gets that

ρT 1/3�ni,nj
(xi, xj )

Z(i, δ)

Z(j, δ)

= e(si−sj )δ

√
4π(τj − τi)

exp

(

− (sj − si)
2

4(τj − τi)
+ 2

3
(τ 3

i − τ 3
j ) + τisi − τj sj

)

+ O(T −1/3). (3.36)

To get the exponential decay (as in (3.22)), one simply deforms the contour to the right or
left of w̃c depending on the sign of si − sj .
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Combining the above with Proposition 3.3 and definitions in Sect. 2.4 yields part (a2) of
Proposition 2.4, by using the fact that

det(1 − χsK1χs)L2({τ1,...,τm}×R) = det(1 − χsK
b
1 χs)L2({τ1,...,τm}×R), (3.37)

where Kb
1 (s, x; t, y) = eb(x−y)K1(s, x; t, y) for any b in a compact interval.

3.1.3 The Case where η <
γ

1+γ

Let m be a given integer. We now consider the asymptotic joint distribution

P

(
m⋂

k=1

{

L1(T , γ 2
k T ) ≤

(
γ 2

k

η
+ 1

1 − η

)

T + skT
1/2

})

. (3.38)

For k = 1, . . . ,m we set

xk =
(

γ 2
k

η
+ 1

1 − η

)

T + skT
1/2, nk = γ 2

k T , ck =
√

γ 2
k

η2
− 1

(1 − η)2
. (3.39)

We recall that the correlation kernel KN is defined in (3.2) and let us set Z(i) := (−η)
γ 2
i

T

(1−η)T
, for

a given small δ > 0.

Proposition 3.4 For si − sj in a bounded interval, it holds

lim
N→∞

√
T

Z(i)

Z(j)
e(si−sj )δKN(ni, xi;nj , xj )

= e(si−sj )δ

√

2πc2
i

exp

(

− s2
i

2c2
i

)

− 1[γi<γj ]
e(si−sj )δ

√
2π(c2

j − c2
i )

exp

(

− (si − sj )
2

2(c2
j − c2

i )

)

. (3.40)

Furthermore, for any κ > 0, there exists a T0 large enough such that
∣
∣
∣
∣

√
T

Z(i)

Z(j)
e(si−sj )δKN(ni, xi;nj , xj )

∣
∣
∣
∣≤ Ce−κ|si−sj |, (3.41)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and si, sj .

Proof of Proposition 3.4 Define

fj (w) :=
(

γ 2
j

η
+ 1

1 − η

)

w + γ 2
j ln(w − η) − ln(w + 1 − η). (3.42)

Then

K1
N(ni, xi;nj , xj ) = 1

(2π i)2

∮

C
dz

∮

C′
dw

z

w

1

w − z
eT (fj (w)−fi (z))+T 1/2(sj w−si z). (3.43)

It is easy to check that the exponential term fj admits two critical points wc = 0 and

w−
c = η2−γ 2

j
(1−η)2

γ 2
j
(1−η)+η

< 0. The critical point wc = 0 satisfies f ′′(0) = 1
(1−η)2 − γ 2

j

η2 < 0. The
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steep descent (resp. ascent) path for fj should pass through w−
c (resp. wc = 0). Nevertheless

the contour C′ has to encircle the critical point wc . To deal with this difficulty, we separate
the contribution of the pose at w = 0 and the pole at w = η − 1. This will modify a little bit
the saddle point analysis, which turns out to be similar to the analysis in Sect. 3 of [5].

Computing the residue at w = 0, one gets that

KN(ni, xi;nj , xj ) = 1

(2π i)2

∮

C
dz

∮

C′′
dw

ewxj −zxi

w − z

(z + 1 − η)T

(w + 1 − η)T

z

w

(w − η)
γ 2
j
T

(z − η)γ 2
i
T

− �ni,nj
(xi, xj ) − 1

(2π i)

∮

C
dze−zxi

(z + 1 − η)T

(1 − η)T

(−η)
γ 2
j
T

(z − η)γ 2
i
T

, (3.44)

where the contour C′′ does not encircle the pole w = 0.

Let us first consider

K2
N(ni, xi;nj , xj ) := 1

(2π i)

∮

C
dze−zxi

(z + 1 − η)T

(1 − η)T

(−η)
γ 2
j
T

(z − η)γ 2
i
T

. (3.45)

For ease we assume that η < 1/2 so that γj > 1, j = 1, . . . ,m. Set the contour
C1 = {z = it, |t | ≤ 2}. Then 2 Re(fi(it)) = γ 2

i ln(t2 + η2) − ln(t2 + (1 − η)2) so that

d

dt
Re(fi(it)) = t

(
γ 2

i

t2 + η2
− 1

t2 + (1 − η)2

)

= t
(γ 2

i − 1)t2 + γ 2
i (1 − η)2 − η2

(t2 + η2)(t2 + (1 − η)2)
(3.46)

has the same sign as t . Thus C1 is a steep descent path for −fi with maximum at z = 0. We
complete C1 by the contour C2 = {z = η + √

4 + η2eiθ ,0 ≤ θ ≤ θ0} where θ0 is defined by
η +√

4 + η2eiθ0 = 2it. Then setting z = η +√
4 + η2eiθ ,

Re
d

dθ
fi(z) = −Im(z)

(
γ 2

i

η
+ 1

1 − η
− 1

|z + 1 − η|2
)

, (3.47)

and there exists a c > 0 such that
γ 2
i

η
+ 1

1−η
− 1

|z+1−η|2 ≥ c along C2, so that also C2 is a steep
descent path for −fi .

Then, for bounded si we obtain

lim
N→∞

√
T

Z(i)

Z(j)
K2

N(ni, xi;nj , xj ) = 1

2πci

∫

R

e−t2/2+itsi /ci dt = 1√
2πci

e
− s2

i

2c2
i . (3.48)

Next, we consider

K3
N(ni, xi;nj , xj ) := 1

(2π i)2

∮

C
dz

∮

C′′
dw

ewxj −zxi

w − z

(z + 1 − η)T

(w + 1 − η)T

z

w

(w − η)
γ 2
j
T

(z − η)γ 2
i
T

(3.49)

for some constant C > 0. We set C′′ = {|w−
c |eiθ , θ ∈ [0,2π]} so that w−

c − η = −γj (1 − η)

ensuring that

d

dθ
Refj (|w−

c |eiθ ) < −|w−
c | sin θ

(
γ 2

j

η
− η

(1 − η)2

)

< −C sin θ, (3.50)
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for 0 ≤ θ ≤ π . Thus Refj achieves its maximum on C′′ at w = w−
c . Now a simple compu-

tation shows that fj (0) − fj (w
−
c ) = ∫ 0

w−
c

f ′
j (x)dx > 0. Thus, one has that

∣
∣
∣
∣

√
T

Z(i)

Z(j)
K3

N(ni, xi;nj , xj )

∣
∣
∣
∣≤ Ce−cT , (3.51)

for some constants C,c > 0. Thus, for bounded si we obtain

lim
N→∞

√
T

Z(i)

Z(j)
K3

N(ni, xi;nj , xj ) = 0. (3.52)

To consider large positive si , we consider the conjugated kernel

K1
N(ni, xi;nj , xj )e

(si−sj )δ, (3.53)

for some δ > 0 small. The contours C1 is modified so that it passes to the right of
(δ + κ)/T 1/2. The w-contour passes to the left of (δ − κ)/T 1/2. The exponential decay
for large positive si follows.

The analysis of �ni,nj
is similar to those of the preceding sections. The exponential term

to be considered is

g(w) := (γ 2
i − γ 2

j )

(
w

η
+ ln(w − η)

)

. (3.54)

g has a single critical point wc = 0 with g′′(0) = − γ 2
i
−γ 2

j

η2 = c2
j − c2

i . Consider the contour

w = η(1 + eiθ ). Then the leading (i.e., non exponentially negligible) contribution to �ni,nj

comes from a neighborhood of width T −1/2 of w = 0. Thus for bounded |sj − si | we deduce
that

lim
T →∞

√
T

Z(i)

Z(j)
�ni ,nj

(xj , xi) = 1

2π

∫

R

dte
−(c2

j
−c2

i
)t2/2+it (si−sj )

= 1
√

2π(c2
j − c2

i )
exp

(

− (si − sj )
2

2(c2
j − c2

i )

)

. (3.55)

For large |sj − si |, we consider the conjugated kernel

KN(ni, xi;nj , xj )e
(si−sj )δ. (3.56)

Depending on the sign of si − sj we modify the contour to be the circle of ray δ ± 2κ ′/
√

T .
This ensures the exponential decay for large |si − sj |. �

The above Proposition 3.4 has the required asymptotic results needed to conclude part
(b) of Proposition 2.4.

3.2 Coupling Lemmas

The following technical lemmas provide a basis for the coupling arguments necessary in our
proof of Theorem 2.9. They provide generalizations of Lemma 4.1 and Lemma 4.2 of [10]
from one-point functions to n-point functions. The proofs, however, are almost identical.
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For the purpose of the lemmas let Xn and X̃n take values in R
k . We say that Xn ≥ X̃n if,

with probability one, every coordinate of Xn is greater than or equal to the corresponding
coordinate of X̃n. We say that Xn ⇒ F , where F is a distribution function on R

k if for all
ε > 0 and (s1, . . . , sk) a continuity point of F , there exists an N = N(ε, s1, . . . , sk) such that
for all n > N ,

∣
∣
∣
∣
∣
P

(
k⋂

i=1

{Xi
n ≤ si}

)

− F(s1, . . . , sk)

∣
∣
∣
∣
∣
< ε. (3.57)

Finally we say that Xn − X̃n converges in probability to zero if for all ε > 0,
limn→∞ P(‖Xn − X̃n‖∞ > ε) → 0 (the infinity norm is just that max over all finitely many
coordinates: ‖X‖∞ = max1≤i≤k |Xi |).

In the three lemmas below we assume all random variables are R
k valued.

Lemma 3.5 If Xn ≥ X̃n and Xn ⇒ D as well as X̃n ⇒ D, then Xn −X̃n converges to zero in
probability. Conversely, if Xn ≥ X̃n, X̃n ⇒ D and Xn − X̃n converges to zero in probability
then Xn ⇒ D as well.

For vectors X and Y in R
k we define Z = max(X,Y ) to be the coordinate-wise maximum

(i.e., Zi = max(Xi, Y i) for i = 1, . . . , k).

Lemma 3.6 Assume Xn ≥ X̃n and Xn ⇒ D1 as well as X̃n ⇒ D1; and similarly Yn ≥ Ỹn

and Yn ⇒ D2 as well as Ỹn ⇒ D2. Let Zn = max(Xn,Yn) and Z̃n = max(X̃n, Ỹn). Then if
Z̃n ⇒ D3, we also have Zn ⇒ D3.

Lemma 3.7 Assume Xn ≥ X̃n and Xn ⇒ D1 as well as X̃n ⇒ D1; and similarly Yn ≥ Ỹn

and Yn ⇒ D2 as well as Ỹn ⇒ D2. Then if (X̃n, Ỹn) ⇒ F (a 2k-dimensional distribution
function) so does (Xn,Yn) ⇒ F . More generally this also applies to m sequences of random
variables under the same hypotheses on each sequence and on their m-point joint distribu-
tion function limit.

Proof of Lemma 3.5 This proof is a straight forward generalization of the proof of Lemma
4.1 of [10] and hence we will not reproduce it. All inequalities in the original proof should
now be considered as holding true coordinate-wise, all absolute values should be replaced
by 
∞ norms (on R

k). The ε sized blocks used should be replaced by k dimensional ε boxes,
and all intervals should interpreted as boxes in R

k . Other than these changes, the proof goes
through word for word. �

Proof of Lemma 3.6 Again this proof is word for word the same as Lemma 4.2 of [10], with
the modified interpretations of notation noted above. �

Proof of Lemma 3.7 Lemma 3.5 shows that Xn − X̃n and likewise Yn − Ỹn converges in
probability to zero. This implies that for all ε > 0, using the triangle inequality and the
union bound,

P(‖(Xn,Yn) − (X̃n, Ỹn)‖∞ > ε) ≤ P(‖Xn − X̃n‖∞ > ε) + P(‖Yn − Ỹn‖∞ > ε), (3.58)

which, by Lemma 3.5 goes to zero as n → ∞. This immediately implies that the joint
(Xn,Yn) converge to the same distribution as (X̃n, Ỹn). Lemma 3.6 is, in fact a corollary of
this result. The generalization follows by the exact same argument as above. �
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3.3 Proof of Theorem 2.9

In Sect. 3.1 we proved Proposition 2.4 directly from asymptotic analysis of the Schur
Process. From that theorem we will, using the three lemmas above and the slow decorre-
lation result of Proposition 2.5, provide proofs of Proposition 2.8 and Theorem 2.9.

Proof of Proposition 2.8 The proof is based on Proposition 2.4 together with slow-
decorrelation phenomenon (Proposition 2.5, see also Remark 2.7).

Consider first cases (a1) and (a2). Denote by τ̃k the number such that (x(τ̃k), y(τ̃k)) (de-
fined in (2.20)) and (x(τk, θk), y(τk, θk)) (defined in (2.29)) belongs to the same character-
istic line. Moreover, notice that the projection along the characteristic direction for τ = 0 to

the line y = γ 2

(1+γ )2 T is obtained by choosing

θk = 2τk

(1 + γ )4/3

γ 2/3(1 + γ 2)
T 2/3−ν (3.59)

in (2.29). However, the slope of the characteristic line passing by (x(τk, θk), y(τk, θk)) differs
from the slope of the characteristic line for τk = 0 by just O(T −1/3). Therefore, as ν < 1,
τ̃k = τk + O(T ν−1) → τk as T → ∞. Also, due to slow decorrelations, the fluctuation of
L1(x(τk, θk), y(τk, θk)) differs from the fluctuation of L1(x(τ̃k), y(τ̃k)) by o(T 1/3), whose
differs from the fluctuations of L1(x(τk), y(τk)) again by o(T 1/3). Thus Proposition 2.8(a1)
and (a2) follows.

The case (b) is even simpler. In that case, the point (θkT , γ 2
k θkT ) is on the same charac-

teristic line as (T , γ 2
k T ), at a distance O(T ). Therefore by Proposition 2.5(b) the fluctuations

of L1(θkT , γ 2
k θkT ) and L1(T , γ 2

k T ) differs only by o(T 1/2), from which Proposition 2.8(b)
follows. �

Proof of Theorem 2.9 We follow the method of [10] and define two coupled random vectors
X and Y . X is the vector of last passage times from (0,0) to (x(τi, θi), y(τi, θi)), 1 ≤ i ≤ m,
with last passage paths forced to take a first step to the right, and Y is the vector of last
passage times with paths forced to take a first step up. Therefore, their coordinate-wise
maximum Z = max(X,Y ) is the last passage times without any restrictions on the first step
(i.e., Zi = L2(x(τi, θi), y(τi, θi)). A key observation is that X and Y are both marginally
distributed as the last passage times for last passage percolation models with only one-sided
boundary conditions (as opposed to the two-sided conditions we must consider for Z). In
the case of Y the one-sided boundary waiting time is exponential of mean 1/η and in the
case of X the boundary waiting time is exponential of mean 1/π . But the coordinates must
be flipped so as to conform to our definition of last passage percolation with one-sided
boundary conditions (the boundary condition should appear on the left boundary, not the
bottom). Depending on the regime of fluctuations we will be able to compare the random
vectors to related but simplified vectors X̃ and Ỹ which have the same asymptotic limiting
distribution but are strictly less than X and Y . Then, using the coupling lemmas we will
be able to show that Z and Z̃ = max(X̃, Ỹ ) have the same distribution limits as T goes to
infinity. However, as X̃ and Ỹ are simpler than X and Y , we will be able to identify Z̃ exactly
and hence determine the asymptotic multipoint distribution of Z, completing our proof.

As slightly different coupling arguments are necessary for each part of the theorem we
will split the proof up according to the four cases of the theorem.
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3.3.1 Proof of Theorem 2.9 Part (a1)

This case corresponds to both X and Y being last passage time vectors from last passage per-
colation models with one-sided boundary conditions of small enough mean so as to behave
asymptotically the same as the corresponding models without boundary conditions. With
this in mind we define X̃ and Ỹ , random vectors which are coupled to X and Y in terms of
the underlying random last passage waiting times. Let X̃ = X and let Ỹ be the vector of last
passage times defined by Ỹ i = L̃1(x(τi, θi), y(τi, θi)). The new last passage time L̃1 is the
last passage time in a coupled model where the boundary waiting times (which are expo-
nential with mean 1/η) are multiplied by η (hence making them distributed as exponentials
of mean 1). The key is that this random last passage time is coupled to the last passage time
L1 since that they are based off of the same random waiting times. Additional, because of
η ≤ 1 it holds L̃1 ≤ L1. Therefore Ỹ ≤ Y where the inequality is in terms of each coordinate
separately. More trivially we also have that X̃ ≤ X.

In order to apply our coupling lemmas we must center and rescale X,Y, X̃ and Ỹ so that
our new X = (X1, . . . ,Xm) equals the vector with coordinates

Xi − 
(τi, θi ,0)

(1 + γ )2/3γ −1/3T 1/3
, 1 ≤ i ≤ m, (3.60)

with 
(τ, θ,0) given in (2.29), and likewise for the other variables. Under this centering and
rescaling X̃ ≤ X and Proposition 2.8 shows that both X̃ and X converge in joint-distribution
to the same A2 process as T → ∞. Likewise Ỹ ≤ Y by construction and Ỹ and Y converge
in joint-distribution to the same A2 process as well. Moreover, Z̃ = max(X̃, Ỹ ) is (except
for a single waiting time of zero at the origin, which is asymptotically irrelevant) the last
passage time vector for a one-sided last passage percolation model with boundary waiting
times with mean 1/η. Proposition 2.8 shows that Z̃ converges in joint-distribution to the A2

process. Therefore, using Lemma 3.6 it follows that Z = max(X,Y ) also converges to the
A2 process, which is exactly what we needed to prove.

3.3.2 Proof of Theorem 2.9 Part (a2)

We are in the case of η = γ (1 + γ )−1 and π > (1 + γ )−1. As such, we can apply the exact
same argument as in the proof of part (a1) above. The only difference is that the Z̃ process
will now, as determined by Proposition 2.8, converge to the ABM→2 process. Therefore Z

will also converge in finite-distribution to the ABM→2 process, which is, again, what we
desired to show.

3.3.3 Proof of Theorem 2.9 Part (a3) (See [6])

This proof is the subject of the recent paper [6]. The coupling techniques employed for all
of the other proof do not apply here. The heuristic explanation is that the last passage time
comes from the competition of two sets of paths each of which goes along the boundary
for distance of order T 2/3 and then enters the bulk. Because the range of the transversal
fluctuations of a last passage path are of that order T 2/3, these sets of paths have non-trivial
correlation, which is evident in that fact that they yield a different process, the Astat process.
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3.3.4 Proof of Theorem 2.9 Part (b)

As before we write the last passage random variable L2(θiT , γ 2
i θiT ) as max(Xi, Y i) where

Xi and Y i are coupled last passage times, restricted to paths which step first right or up,
respectively. We now couple Xi with X̃i which is the last passage time when forced to stay
along the bottom edge for a specific deterministic fraction of the path, and then depart into
the bulk. Specifically we define X̃i to be the max of passage times over all paths which go
distance

(

1 − γ 2
i

(π−1 − 1)2

)

θiT (3.61)

and then take a step up. Likewise we define Ỹ i to be the max of the passage times over all
paths which go distance

(

γ 2
i − 1

(η−1 − 1)2

)

θiT (3.62)

and then take a step right. It is clear that X̃i ≤ Xi and that Ỹ i ≤ Y i . What is not obvious is
the choice of distances. In short, this is given by the solution to an optimization problem at
the level of the law of large numbers (see [5] for an explanation of this heuristic).

Define the following events: for i ∈ {1, . . . ,ml + ms}, set

Ei =
{

L2(θiT , γ 2
i θiT ) ≤

(
γ 2

i

η
+ 1

1 − η

)

θiT + siT
1/2

}

, (3.63)

while for i ∈ {1 + ml + ms, . . . ,m}, set

Ei =
{

L2(θiT , γ 2
i θiT ) ≤

(
1

π
+ γ 2

i

1 − π

)

θiT + siT
1/2

}

. (3.64)

Notice that for i ∈ {ml + 1, . . . ,ml + ms} both definitions are identical. Likewise, define Ẽi

except in place of L2(θiT , γ 2
i θiT ) use Z̃i = max(X̃i, Ỹ i). Let us denote L2(θiT , γ 2

i θiT ) =
max(Xi, Y i) as Zi . It is clear that Z̃i ≤ Zi . We claim that

lim
T →∞

P

(
m⋂

k=1

Ek

)

= lim
T →∞

P

(
m⋂

k=1

Ẽk

)

. (3.65)

For i ∈ {1, . . . ,ml} center and scale Xi, X̃i, Y i, Ỹ i ,Zi and Z̃i by applying

x �→ x − ( γ 2
i

η
+ 1

1−η

)
θiT

T 1/2
. (3.66)

It follows from the one-point fluctuation result of [10] that the centered and scaled Z̃i and
Zi both converge in distribution to the same Gaussian random variable with variance

θi

[
γ 2

i

η2
− 1

(1 − η)2

]

. (3.67)

For i ∈ {ml + ms + 1, . . . ,m} we center and scale with

x �→ x − (
1
π

+ γ 2
i

1−π

)
θiT

T 1/2
. (3.68)
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Then the centered and scaled Z̃i and Zi both converge in distribution to the same Gaussian
random variable with variance

θi

[
1

π2
− γ 2

i

(1 − π)2

]

. (3.69)

For i ∈ {ml +1, . . . ,ml +ms} we center and scale as (3.66). Then the centered and scaled
Z̃i and Zi both converge in distribution to the maximum of two Gaussian random variables
with variances given by (3.67) and (3.69).

Since for every i ∈ 1, . . . ,m, the centered and scaled Zi and Z̃i converge to the same
distributions, and since Z̃i ≤ Zi , Lemma 3.7 implies that the asymptotic joint distribution of
the Zi , and of the Z̃i converge to the same distribution. This proves the claim given in (3.65).

Therefore it remains to show that the joint distribution of the Z̃i behaves as desired.
The fluctuations given by Z̃i are a combination of the fluctuations from the boundary wait-
ing times and from the bulk waiting times. However, since we scaled by T 1/2 and since
the boundary and bulk fluctuations are independent, the bulk fluctuations have a prefactor
of T −1/6 and hence (by, for instance applying the Converging Together Lemma on p. 89
of [24]) only the boundary fluctuations contribute asymptotically. The covariance of these
fluctuations depends on portion of the boundary which the X̃i and Ỹ i depend upon. We can
encode this covariance structure in terms of two independent Brownian motions (one for the
left boundary and one for the bottom boundary). For i ∈ {1, . . . ,ml} all of the fluctuations
come from the left boundary. For i ∈ {ml +ms + 1, . . . ,m} all of the fluctuations come from
the bottom boundary. For i ∈ {ml +1, . . . ,ml +ms} fluctuations come from the maximum of
the left and bottom boundary Brownian motions. Writing down this joint distribution leads
exactly to (2.39). �

Remark 3.8 It is worth noting that in the proof of part (b) above we did not, in fact, appeal
to the analogous one-sided last passage percolation result of Proposition 2.8. This is because
we needed to establish the product structure and hence reduce everything to just processes
along the boundary. As such the Brownian motion results of Propositions 2.4 and 2.8 may,
in fact, be proved directly in this manner (as they are corollaries of this result) and do not
require the asymptotic analysis of the Schur process.

3.4 Proof of the TASEP Height Function Theorem

Proof of Theorem 2.1 The connection between two-sided directed percolation and TASEP
has been discussed in Sect. 2.2.1. Consider first the cases (a1)–(a3). From (2.16) we have

P

( m⋂

k=1

{hT +θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P

( m⋂

k=1

{L2(xk, yk) ≤ T + θkT
ν}
)

(3.70)

with (difference of order 1, due to the integer parts which are not explicitly written since
they are irrelevant in the asymptotics)

xk = 1

2
(X(τk, θk) + H(τk, θk, sk)),

(3.71)
yk = 1

2
(H(τk, θk, sk) − X(τk, θk)),
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where X and H are defined in (2.9). Explicitly, by setting γ := (1 − ξ)/(1 + ξ), i.e.,
ξ = (1 − γ )/(1 + γ ), we have

xk = 1

(1 + γ )2
(T + θkT

ν) + τk

2γ 1/3

(1 + γ )5/3
T 2/3 + (τ 2

k − sk)
γ 2/3

(1 + γ )4/3
T 1/3,

(3.72)

yk = γ 2

(1 + γ )2
(T + θkT

ν) − τ
2γ 4/3

(1 + γ )5/3
T 2/3 + (τ 2

k − sk)
γ 2/3

(1 + γ )4/3
T 1/3.

Once the problem is rewritten in terms of directed percolation, the theorem is proven
using Theorem 2.9 and the slow decorrelation (see Proposition 2.5), i.e., we use a similar
strategy of the proof of Proposition 2.8 starting from Proposition 2.4.

For the above given (xk, yk), the limit shape (2.18) gives us

xk(1 +√
yk/xk)

2 = T + θkT
ν − sk

(1 + γ )2/3

γ 1/3
T 1/3 + O(1). (3.73)

Therefore,

P

(
m⋂

k=1

{L2(xk, yk) ≤ T + θkT
ν}
)

= P

(
m⋂

k=1

{

L2(xk, yk) ≤ xk(1 +√
yk/xk)

2 + sk

(1 + γ )2/3

γ 1/3
T 1/3 + O(1)

})

. (3.74)

The fluctuations (with respect to the limit shape behavior) are, by the slow decorrelation
theorem, the same as the fluctuations of the projection along the characteristic line on the

line x + y = 1+γ 2

(1+γ )2 (T + θkT
ν). Exactly as in the proof of Proposition 2.8, we can use an

approximate characteristic line, namely the characteristic line for τk = sk = 0. We look for
τ̃k such that

xk = x(τ̃k, θk) + r(1 + γ )−2,

yk = y(τ̃k, θk) + rγ 2(1 + γ )−2
(3.75)

with x(τ, θ), y(τ, θ) as defined in (2.29). If τ̃k → τk as T → ∞, then the theorem is proven.
This is the case, algebraic computations lead to τ̃k = τk + O((sk − τ 2

k )T −1/3) as desired.
Consider now the case (b). From (2.16) we have

P

( m⋂

k=1

{hθkT (ξkθkT ) ≥ hma(ξk)θkT − 2skT
1/2}

)

= P

( m⋂

k=1

{L2(xk, yk) ≤ θkT }
)

(3.76)

with

xk = 1

2
(ξkθkT + hma(ξk)θkT − 2skT

1/2),

yk = 1

2
(hma(ξk)θkT − ξkθkT − 2skT

1/2).

(3.77)

Let us focus on the case ξk ≤ 1 − (ρ− + ρ+) (remind η = ρ− and π = ρ+); we have

xk = (1 − ρ−)(ρ− + ξk)θkT + skT
1/2,

yk = ρ−(1 − ρ− − ξk)θkT + skT
1/2.

(3.78)
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Let θ̃k and γ̃k such that xk = θ̃kT and yk = θ̃k γ̃
2
k T . Then, we get

θkT = S(γ̃k)θ̃kT + sk

T 1/2

ρ−(1 − ρ−)
, (3.79)

and

θ̃k = (1 − ρ−)(ρ− + ξk)θk + O(T −1/2). (3.80)

Then, we can apply directly (2.39) with θk replaced by θ̃k , γk by γ̃k and sk replaced by
sk/(ρ−(1 − ρ−)) (similarly for the case ξk > 1 − (ρ− + ρ+)) to get

lim
T →∞

P

(
m⋂

k=1

{L2(xk, yk) ≤ θkT }
)

= P

(
ml+ms⋂

k=1

{

B
(

θk

1 − 2ρ− − ξk

ρ−(1 − ρ−)

)

≤ sk

ρ−(1 − ρ−)

})

× P

⎛

⎝
m⋂

k=ml+1

{

B′
(

θk

ξk + 2ρ+ − 1

ρ+(1 − ρ+)

)

≤ sk

ρ+(1 − ρ+)

}
⎞

⎠ . (3.81)

Finally, one uses the scaling of Brownian Motion to rewrite it as in (2.14). �
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